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ABSTRACT

Analysis of morphological data is central to a broad class of scien-

tic problems in materials science, astronomy, bio-medicine, and

many others. Understanding relationships between morphologies

is a core analytical task in such settings. In this paper, we propose

a graph-based framework for measuring similarity between mor-

phologies. Our framework delivers a novel representation of a mor-

phology as an augmented graph that encodes application-specic

knowledge through the use of congurable signature functions. It

provides also an algorithm to compute the similarity between a pair

of morphology graphs. We present experimental results in which

the framework is applied to morphology data from high-delity

numerical simulations that emerge in materials science. The results

demonstrate that our proposed measure is superior in capturing

the semantic similarity between morphologies, compared to the

state-of-the-art methods such as FFT-based measures.

CCS CONCEPTS

• Computing methodologies → Data assimilation; • Informa-

tion systems → Similarity measures.
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1 INTRODUCTION

The term morphology, in science and engineering, refers to shapes

and structures of objects. The objects of interests may be nebulae

or galaxies in astronomy [14], vesicles, and tissues in biology and

medicine [10], or phases in materials science [19], to name just

a few. In this work, our focus is on morphologies emerging in

materials science (although the techniques we propose are generic

and can be applied in other contexts). Here morphology refers to
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the distribution of components (or phases) within a material (see,

e.g., Figure 1). Morphology reects a complex internal organization

of a material, which is a result of the manufacturing process applied

to obtain it. It also directly controls material’s physical properties

(e.g., stiness, conductivity, etc.). Consequently, by performing data

analytics on materials’ morphologies we can gain insights into how

materials’ manufacturing processes relate to materials’ properties.

This question is critical as it is the key to smart materials design

in which manufacturing process is tailored on demand to obtain a

material with a specic set of desired characteristics.

In order to perform meaningful data analytics we rst need a

notion of similarity between morphologies. However, the currently

available approaches, which we review in Section 5, either take

highly simplied view of the morphology, e.g., focusing on pixels

in the morphology images, or apply transformations that average

out structural properties of morphologies or relay on sometimes

dicult to satisfy assumptions. To address these shortcomings, we

propose a new computationally ecient and congurable similarity

measure that is based on graph abstraction. Our main idea is to

simplify complex morphologies by abstracting them as graphs, that

are weighted with domain specic information, and then express

similarity as a distance between morphology graphs. Because both

morphology graph structure and its weights have clear interpreta-

tion, our similarity can be easily tailored to the specic applications.

To address computational complexity of graphs comparison, we

take advantage of inherent properties of the morphology graphs to

devise a linear time solution. Our experimental results demonstrate

superior performance of our approach in capturing morphologies

similarity on both synthetic as well as real world data, including in

real-world applications (like morphologies clustering).

2 PRELIMINARIES

Consider a set X = {X1, . . . ,XN } of N morphologies, where the

morphology Xi is represented by a (n × m) bitmap, i.e., Xi ∈

{0, 1}n×m , and Xi (x ,y) is a bitmap pixel at position (x ,y). All mor-

phologies in the set X represent some state of the same physical

phenomena or process we want to study. For instance, in Figures 1

and 2 we show a sample of images and their corresponding mor-

phologies that capture the evolution of the separation of two ma-

terials within a xed volume. The study of such phase separation

process turns out to be one of the fundamental problems in mate-

rials science [6]. The process can be modeled via a set of complex

dierential equations, in which case the resulting morphologies are

represented via a composition eld, ϕ : Ω → R, where Ω ∈ R
D is

the D-dimensional domain over which ϕ is dened. On the other

hand, the same process can be physically executed and observed

using microscopy. In such case, the resulting morphologies are di-

rectly represented as multi-channel images. In our example, the
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Figure 1: Example micrographs representing dierent

phases of organic materials blending process. The top row

shows predictions from a computational model. The bot-

tom row shows related observation from atomic force mi-

croscope [16]. Corresponding morphologies are presented

in Figure 2.

Figure 2: Morphologies corresponding to the micrographs

in Figure 1.

three morphologies in the top row are the visualizations of the

composition eld gathered for the nal state of three dierent nu-

merical simulations. The three morphologies in the bottom show

the actual state of the same materials as captured by microscopy.

The key point here is that irrespective of the original representa-

tion, morphology can be ultimately captured as a xed-sized bitmap.

We note that this is true not only for morphologies appearing in

materials science, but also in cosmology, biometry, tomography, etc.

Given the setX, our objective is to capture the similarity between

any two morphologies Xi ,Xj ∈ X. Let f : X × X → [0,∞) denote

such a similarity function. As discussed earlier, f is critical for a

variety of analyses one may want to perform on morphologies (e.g.,

searching, clustering, manifold learning, etc. [17]). In practice, the

function must capture the semantics of the morphology, i.e., its geo-

metric features that reect the dynamics of its underlying process.

We note that this question is dierent from a traditional image com-

parison. Specically, the focus is on interpretability and eciency,

going beyond basic pixel, texture or color intensity matching (we

provide more discussion in Section 5).

In order to be practical, the function f must satisfy two basic

requirements. First, it must be congurable, such that it is able to

capture the semantic properties of a morphology whose denition

may vary from application to application. For example, when ana-

lyzing morphologies in the material separation process (Figure 2)

in one application we may be interested only in shape of the fea-

tures (i.e., two morphologies are similar only if they have similar

droplets/grains). In another application, we may be looking in how

complex the features are, which may be captured by their fractal

dimension. The second requirement is that the function is spatially

invariant, meaning that it is exible in how it uses information

about position of the features of interest within morphology. For

example, consider again Figure 2 and suppose that we are interested

in how well two materials separate in the bulk. If we focus only on

the shape of droplets and disregard their spatial distribution, the

rst two morphologies are more similar to each other compared to

the third one. In this case, we want to disregard spatial information

since the process that generated morphologies is highly stochas-

tic, and hence the actual position of droplets carries little physical

information. However, in the presence of additional physical con-

straints (say morphology sandwiched between two electrodes in a

device [20]) droplets closer to the constraint may be of much high

importance and their location may have to be taken into account

when computing the similarity. Hence the function should have

some exibility in handling such scenarios.

As noted above, it is inevitable that dierent applications will

require a specic function, tailored to their particular needs. Thus,

it is more appropriate to call f a family of functions. However,

for simplicity of presentation we will refer to f as a function, and

discuss its specic instances, whenever appropriate.

3 PROPOSED APPROACH

To satisfy the two requirements outlined in the previous section, we

express the similarity between two morphologies, using concepts

from graph theory. Specically, we rst show how a morphology

can be represented as amorphology graph – an undirected graph cap-

turing basic structural properties of the morphology, i.e., pairwise

relationship between its features of interest. Next, we introduce

the concept of a signature function to augment the morphology

graphs with application-specic knowledge. Finally, we propose

a graph comparison method that exploits properties of morphol-

ogy graphs to represent them as vectors and compare them in a

computationally and memory ecient way.

3.1 Representing Morphology as Graph

Recall that initially morphology Xi ∈ X is a (n×m) bitmap, derived

from an image representing some phenomena of interest. To gain

more exibility in morphology description, we propose an alterna-

tive representation that abstracts a morphology via an undirected

graph. To achieve that, we rst introduce the concept of connected

components. Intuitively, a connected component in a morphology

represents a local region with the same properties of interest (e.g.,

droplets in Figure 3). The collection of all connected components,

together with their pairwise relationships, will provide us with the

description from which we are going to build the target function f .
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(a) Morphology X. (b) Component C1. (c) Component C3.

C1

C2

C3 C4

C5

C6 C7

(d) Morphology graph

for X (also X
′ and X

′′).
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(e) Morphology X
′.
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C3C4

C5
C2C6

C7

(f) Morphology X
′′.

Figure 3: Example morphology with its connected components and the resulting morphology graph.

To dene connected components, we begin by formalizing the

notion of pixel neighborhood via the following denition.

Definition 3.1 (Pixel Neighborhood). For any (n ×m) bitmap,

the neighborhood of a pixel (i, j), denoted asnbd(i, j), is the set of its all

adjacent pixels in the bitmap, i.e.,nbd(i, j) = {(i ′, j ′) : |i−i ′ |+|j−j ′ | =

1, ∀i ′ ∈ {1, . . . ,n}, j ′ ∈ {1, . . . ,m}}.

We note that by denition pixel neighborhood is commutative,

which means that the following assertion always holds: (i ′, j ′) ∈

nbd(i, j) ô (i, j) ∈ nbd(i ′, j ′). This allows us to dene connected

component as:

Definition 3.2 (Morphology Connected Component). For a

given morphology, X, a connected component, C, is a (n ×m) bitmap

such that for every pair (i, j) and (i ′, j ′), where (i ′, j ′) ∈ nbd(i, j), if

C(i, j) = 1 and X(i, j) = X(i ′, j ′) then C(i ′, j ′) = 1. We will denote by

value(C) the pixel valueX(i, j) of any pixel (i, j) such that C(i, j) = 1,

and will refer to it as component value or just value.

Since the above denition ensures that any connected compo-

nent is maximal, i.e., no additional pixels can be added to it, we can

dene the complete set of connected components for a morphology

X as C = {C1,C2, . . . ,C |C | }.

To illustrate the above denitions consider the example in Fig-

ure 3. Here, morphology X has seven connected components, i.e.,

|C| = 7, that correspond to neighborhoods of pixels with the

same value (for simplicity marked directly on the morphology

image). The value of components C1 and C2 is white (or 1), i.e.,

value(C1) = value(C2) = 1, and the value of components C3 to C7

is black (or 0).

We are now ready to introduce our key idea, which is the mor-

phology graph:

Definition 3.3 (Morphology Graph). Given a morphology X

and its morphology set, C, the morphology graph, GX = (C, E), is

an undirected graph in which two vertices, Cu ∈ C and Cv ∈ C, are

connected by an edge, if and only if they are adjacent. Here adjacent

means that there exists at least one pair of pixels, (i, j) and (i ′, j ′),

such that (i, j) ∈ nbd(i ′, j ′) and Cu (i, j) = 1 and Cv (i
′
, j ′) = 1, or

equivalently Cu (i, j)  Cu (i
′
, j ′) or Cv (i, j)  Cv (i

′
, j ′). We will

write G when morphology for which the graph is constructed is clear

from the context.

From the above denitions, we can infer several practical obser-

vations. First, the number of components in the morphology set

can range from 1, if all pixels in the morphology have the same

value, to n ·m, if the pixel values alternate forming a checkered

pattern. Two connected components will be connected by an edge

in the corresponding morphology graph only if they have dierent

values, which means that the morphology graph is always bipartite.

Furthermore, the graph must be acyclic (i.e., it is a tree), which will

enable us to design ecient comparison algorithms. The acyclic

property can be proven by noting that, if two nodes are connected

by an edge, then either one of the corresponding components is

contained inside the other component or the two components span

the full length or breadth of the entire morphology area. This means

that it is impossible to have another path between any pair of nodes

that share an edge. In Figure 3d, we show example morphology

graph where the color of each vertex corresponds to the value of

its connected component.

The graph abstraction directly and compactly describes rela-

tionships between components of the morphology (e.g., which

components are neighboring) disregarding components location

within the morphology. Hence it addresses the spatial invariant

requirement that we outlined in Section 2. Every morphology will

have a unique graph representation, but a single graph may repre-

sent multiple morphologies. For example, consider morphologies

X,X
′ and X

′′ in Figure 3. All three are represented by the same

graph in Figure 3d. The fact that morphologies X and X
′ are repre-

sented by the same graph is highly desired (from our perspective,

these are essentially the same morphologies – they have identical

components though at varying positions). However, it is not so

with morphology X
′′. Here, we cannot argue that components are

the same as in X (or X′), especially if we look at components C2

and C5. In fact, this morphology is suciently dierent to assume

that it has been generated by dierent process than the other two,

or represents dierent time-step of the same generating process.

To address this potential problem, we will extend our graph rep-

resentation such that it carries information about properties of

the individual components. Because it is very unlikely that two

dissimilar morphologies will have the same graph structure and

the same properties assigned to their components, the resulting

representation will be more robust.

Let function д : {0, 1}n×m → R be a user-specied function that

quanties some characteristic of interest for each component of the

morphology. We will call such function a signature function. The

signature function will be typically dened by a domain expert,

taking into account specics of the considered physical phenomena

for which we obtained morphologies. It will allow us to characterize

each component independently of the remaining components in the

morphology. By weighting each node C in the morphology graph

by its corresponding value д(C) we will add critical information to

the graph, fullling the congurability requirement described in

Section 2.
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To provide concrete examples of function д, we list a few func-

tions that emerge in materials science [1]. These include surface-to-

volume ratio дSA:V (C) =
SA(C)
V (C)

, where SA denotes surface area and

V is a volume, fractal dimension where дD (C) is computed as the

Hausdor dimension [15], or anisotropy dened asдAni (C) =
dx (C)
dy (C)

,

where (dx (C),dy (C)) are signed dimensions of the bounding box

around C. In real-world applications, дSA:V captures porosity or

compactness of a component that directly aects its chemical reac-

tivity, дD provides information about how given component inter-

penetrates with its neighbors, which is important for the physical

properties such as conductivity, and дAni is a proxy to characterize

directional stiness of the material that the morphology represents.

We note that this list is by no means exhaustive, and the advantage

of our approach is that any function д can be plugged into our

general framework.

3.2 Vectorization of Morphology Graph

Given two morphologies described by their morphology graphs

with the same function д, the question of nding a similarity func-

tion f becomes now the problem of graph comparison. This prob-

lem, often referred to as graph alignment, is well studied especially

in the context of computational biology [9]. However, the exist-

ing approaches are usually extremely computationally demanding,

and relay on some additional function to establish isomorphism

between nodes of the graphs under consideration. In this work, we

address both challenges by exploiting properties of the morphol-

ogy graphs. The general idea derives from the observation that if

two morphologies are highly similar then their morphology graphs

should have roughly the same node degree and function д distribu-

tions. To test for that, we will rst decide how each morphology

graph should be rooted (recall that each morphology graph is a

tree). Then, we will establish which nodes in one graph should be

compared to which nodes in the other graph by ordering them via

a Breadth-First-Search (BFS) traversal. By rooting and traversing

morphology graphs in the same consistent way, we will narrow

down the comparison space. Finally, to ensure that these tasks are

executed in a computationally ecient way, we will leverage the

fact that morphology graphs are bipartite. We note that the end

result of the proposed transformations is equivalent to representing

a morphology graph as a high dimensional vector, and hence will

refer to it as vectorization.

Choosing the Root Node. As we mentioned, the rst step in our

approach is to select the root node for each morphology we wish to

compare. This step is critical as it directly aects the order in which

we are going to traverse ourmorphology graphs and hence the order

in which we will compare components between the morphologies.

In our approach, the root node will represent the most signicant

component in the morphology. In cases where importance of the

components will be clearly dened by the morphology generating

process (recall our example in Section 2 where physical constraints

dictate importance) we will select the root node following that crite-

ria. In cases when such constraints will not be available, we will use

the following heuristic: we will root each morphology graph by the

node that is central in the graph to which it belongs. Because we are

dealing with trees, this means the node with the highest number of

adjacent nodes. This heuristic is based on the observation that since

the central node captures the highest information about pairwise

interactions between the components, it will capture the most spa-

tial constraints (again, we expect that highly similar morphologies

will have similar constraints).

It is possible that given morphology graph will have multiple

nodes with the same maximal connectivity. In such cases, we will

break the tie by always choosing the node with a-priori agreed

component value (e.g., if two nodes are tied then pick the white

one) or the smallest signature (i.e., value of д).

Constructing the Feature Vector. Given the root node r of the

morphology graph G, the second step is to traverse the graph to

establish the ordering of its nodes, and thus build its vector repre-

sentation. The traversing algorithm is summarized in Algorithm 1.

In the essence, we perform BFS traversal over G starting at node r .

Whenever we visit a new vertex (i.e., morphology component), we

add a tuple with its corresponding signature and value to the ini-

tially empty output vector (lines 5-6). The order in which nodes are

visited at given BFS level is decided by the value of their function д.

Specically, after extracting unexplored neighborhood of a vertex

(denoted by function NG in line 7) we sort it in line 8, and use the

resulting order to continue exploration in lines 9-10. Observe that

by ordering the nodes we further constrain which nodes will be

compared with which.

To illustrate how our vectorization routine works, consider mor-

phology graph G in Figure 3d, and suppose that we have func-

tion д with the following property: д(C1) is the smallest value,

д(C3) < д(C4) < д(C5) and д(C7) < д(C6). In that case, we would

select r = C1 to be the root, since it is tied with C2 but has smaller

signature, and by calling Vectorize(G, r ) we would generate the

following vector:

v = [(д(C1), 1), (д(C3), 0), (д(C4), 0), (д(C5), 0),

(д(C2), 1), (д(C7), 0), (д(C6), 0)].

In the vector representation of a morphology, the lower dimen-

sions of the vector, specically the dimensions representing root

and its immediate neighbors, uniquely describe the graph for which

the vector has been derived (i.e., given the vector we can reconstruct

its graph). But as we consider higher dimensions, the representa-

tion is no longer unique. For example, the vector v presented above

could equivalently describe morphology graph in which component

C2 is neighboring vertex C3 or C4. However, this is actually ad-

vantageous as it reects our assumption that the actual location of

the components within morphology should not matter. The dimen-

sionality of the vector representing a morphology will be the same

as the number of components in that morphology. Consequently,

when comparing two vectors we will have to nd a reliable way

to align them such that similar components between the two mor-

phologies are matched. Here similar means not only components

with the same value, but also potentially similar signature.

3.3 Comparing Morphologies Using Vectors

We are now ready to bring all ingredients together to dene func-

tion f . Given two morphologies Xi and Xj and a signature func-

tion д, to compute f (Xi ,Xj ) we will rst vectorize graphs GXi
and
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C2

C3

C4

C7

C1

C2

C3

C6

C4

C5

0 0 0g(C1) g(C2) g(C3) g(C4) g(C5)

0g(C1) g(C2) g(C3) g(C4) g(C5) g(C6) g(C7)

Xi

Xj

g(C1) g(C2) g(C3) g(C4) g(C5)vXi

g(C1) g(C2) g(C3) g(C4) g(C5) g(C6) g(C7)vXj

Vectorize ComputeF

Figure 4: Two examplemorphologies togetherwith their corresponding vector representation, and the alignment of the vectors

induced by the ComputeF function.

Algorithm 1 Vectorize(G, r )

1: Q ← ∅

2: Q .Enqeue(r )

3: v ← ∅ ◁ output vector

4: while Q  ∅ do

5: Cu ← Q .Deqeue()

6: v .Append((д(Cu ),value(Cu )))

7: L ← NG(Cu )

8: Sort(L,Ci < Cj i д(Ci ) < д(Cj ))

9: for each Cv ∈ L do

10: Q .Enqeue(Cv )

11: return v

GXj
, and then we will compute the nal distance between the vec-

tors taking into account the need for alignment. This is summarized

in Algorithm 2.

Algorithm 2 ComputeF(Xi ,Xj )

1: vXi
← Vectorize(GXi

,Root(GXi
))

2: vXj
← Vectorize(GXj

,Root(GXj
))

3: pi ← 1

4: pj ← 1

5: vf ← ∅

6: while pi < |vXi
| ' pj < |vXj

| do

7: if vXi
[pi ].value = vXj

[pj ].value then

8: vf .Append(vXi
[pi ].д −vXj

[pj ].д)

9: pi ← pi + 1

10: pj ← pj + 1

11: else

12: if vXi
[pi ].value  vXi

[pi − 1].value then

13: vf .Append(vXi
[pi ].д − 0)

14: pi ← pi + 1

15: else

16: vf .Append(0 −vXj
[pj ].д)

17: pj ← pj + 1

18: for p = pi . . . |vXi
| do

19: vf .Append(vXi
[p].д − 0)

20: for p = pj . . . |vXj
| do

21: vf .Append(0 −vXj
[p].д)

22: return f ← ∥vf ∥

Given the vector representation of the input morphologies (lines

1-2), where function Root is as described in Section 3.2, the algo-

rithm iteratively constructs vectorvf to capture similarity between

signatures of the matching components. Here, the matching is es-

tablished by exploiting the fact that the graphs GXi
and GXj

are

bipartite, and components within given BFS level are ordered by

their signature. The example of this process is visually presented in

Figure 4. The algorithm rst checks whether components (dimen-

sions) to compare correspond to the same BFS level (line 7). Since

the graph is bipartite, this can be established by checking if the

corresponding component values are the same. If that is the case,

the algorithm compares signatures of the components, one-by-one

in the order in which they appear (lines 8-10). Because within a

BFS level components are ordered by their signature, this process

will be minimizing dierences between similar morphologies and

amplifying dierences between diverging morphologies. In case

when the number of components at given BFS level diers between

morphologies (else statement in line 11), the algorithm executes

the alignment step (lines 13 and 14) by penalizing the missing com-

ponents (loops in lines 18 and 20 are to handle corner case of that

idea). Finally, the algorithm computes and returns a norm of the

vector vf as the nal similarity measure (line 22). Here, potentially

any norm can be used, however, in our applications we commonly

depend on L2.

The computational complexity of Algorithm 2 is linear and

bounded by the number of components in the input morpholo-

gies, i.e., it is O(|vXi
| + |vXj

|). This is because the main iteration

requires that each component in the morphology will be visited

exactly once. The same holds true for functions Vectorize and

Root. The memory complexity isO(1) as we observe that the vector

vf does not have to be explicitly instantiated, and instead the com-

putation of the norm of vf can be integrated into the components

comparison in lines 8, 13 and 16. Considering that the typical graph

comparison algorithms have complexities aboveO(|vXi
| · |vXj

|) we

dare to call our algorithm ecient.

4 EXPERIMENTAL VALIDATION

In this section we demonstrate the ecacy of the proposed method

in capturing the semantic similarity between a pair of morphologies

on both synthetic and real-world data sets. To put our results in

context, we compare the proposed approach to two state-of-the-art

methods, one based on direct pixel-by-pixel comparison and the
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other based on FFT transformation. The prototype implementation

of our algorithms and our test data sets are freely available from

https://github.com/ubdsgroup/meads/.

4.1 Experimental Data

We show results on two data sets. The rst set consists of synthetic

morphologies in which we control the complexity of the morpholo-

gies. This permits us to analytically reason about the distances

between them. The second set consists of real-world morpholo-

gies obtained via high-delity numerical simulations of spinodal

decomposition in polymer blends. These kind of simulations are fre-

quently used in materials science to understand physical processes

occurring in manufacturing of organic solar cells, bio-sensors, and

other organic thin-lm based technologies [20]. They are also rep-

resentative of a broader class of physical phenomena in which the

stochastic nature of the underlying processes leads to similar but

not identical morphologies.

When analyzing both data sets, we use surface-to-volume ratio

(дSA:V ) as our choice of signature function, since it best represents

the semantic features of the morphologies in the two data sets.

Synthetic Set. To generate set X of synthetic morphologies we use

the following process. First, we generate an initial morphology, X1,

which consists of few randomly sized circles (although any basic

shape could be used). The circles are randomly placed within a

xed area (see Figure 5a). Each such component has component

value of 0 (black), while the remaining part of the morphology has

component value of 1 (white). To generate subsequent morpholo-

gies, we iteratively apply transformation Xi = t(Xi−1), where t

randomly selects one of the following operations:

(1) Scale up one randomly selected morphology component. The

radius of the selected component is scaled by a factor µ > 1

(see Figure 5b).

(2) Add a new component. If the component is placed within

component other than the one representing the entire mor-

phology area, it is centered and its radius is selected ran-

domly with the constraint that it must be smaller than the

radius of the surrounding component. The value of the new

component is set to be opposite to the value of the surround-

ing component (see Figure 5c). Otherwise, the component is

just randomly placed with the component value of 1.

Figure 5 shows an example of the above generation process.

The process guarantees that for any i < j, the morphology Xj

will have either more components, or have larger components than

morphologyXi . This, in turn, means that the similarity measured by

an ideal similarity function should be inversely proportional to the

number of transformations separating twomorphologies. Therefore,

when applied to the synthetic data, we expect that our similarity

function f should maintain the following property: f (Xi ,Xj ) ∝
1

j − i
,∀i < j.

Organic Thin-film Set. This data set consists of morphologies repre-

senting a physical phenomenon called spinodal decomposition in

organic blends [8]. As mentioned earlier, morphologies in this data

set are generated using a computational model of morphology evo-

lution during thermal annealing of the thin organic lms [20]. For

a given input parameters representing blend ratio, ϕ, and strength

of interaction, Ç , which reect fabrication conditions, the model de-

livers a series of morphologies that capture temporal changes that

the material undergoes during the fabrication process. We refer to

such ordered set of morphologies as trajectory. In Figure 6, we show

example morphologies extracted at the beginning, in the middle

and at the end of one example trajectory with (ϕ, Ç ) = (0.50, 2.4).

From the gure, we can see that even within a single trajectory

we may obtain topologically diverse morphologies: ranging from

bubble-like to highly interpenetrated structures. This diversity is

further amplied by the changes to parameters (ϕ, Ç ), as we can

observe in Figure 10. Finally, for exactly the same parameters (ϕ, Ç )

dierent executions of the simulation deliver morphologies that are

not identical, however are semantically similar. This is because the

generation process is stochastic: in the underlying physics-based

model dierent seed values are used to initiate the random eld.

To perform our tests we considered sixteen trajectories spanning

ϕ ∈ {0.5, 0.53, 0.56, 0.59} and Ç ∈ {2.2, 2.8, 3.4, 4.0}, with ve

replicas for each trajectory.

4.2 Results on Synthetic Data

In the rst set of experiments, we consider X with 50 synthetically

generated morphologies. We compute similarity between each pair

of morphologies using three methods: 1) our proposed ComputeF

function, 2) pixel-by-pixel distance in which distance between mor-

phologies is computed as dierence between their corresponding

pixels, and 3) distance between the 2D Fourier transformed mor-

phologies (2D-FFT). Here we wish to note that the FFT-based mor-

phology distance is currently the most commonly used method in

the scientic community [11, 18].

Using each of the three similarity measures we construct similar-

ity matrix and visualize it as a heat map, as shown in Figure 7. Here,

0 means that morphologies are identical, and 1 that morphologies

are highly dissimilar (in all cases, similarity is normalized by apply-

ing a linear transformation to the morphology distances). Since a

morphology is most similar to itself we expect to see zeros on diago-

nal. This is indeed the case for all three measures. As we move away

from the the diagonal, the number of transformations between the

morphologies increases and, as discussed in the previous section,

the distance between the morphologies should also increase pro-

portionally. Again, as we would expect this holds true for all three

measures, however, for each in slightly dierent way. Specically,

the pixel-by-pixel (Figure 7a) and 2D-FFT (Figure 7c) similarities

show an abrupt jump as the gap between the morphology increases,

whereas in the ComputeF the distance increases gradually. We

consider this behaviour more in inline with the characteristics of

our synthetic data discussed in the previous sub-section.

4.3 Results on Organic Thin-lm Set

We further evaluate our framework using the organic thin-lm

data. To perform the evaluation we compute three dierent types

of similarity matrices: 1) a within-trajectory matrix that captures

pairwise comparison between all morphologies within a trajectory

for given conguration parameters (ϕ, Ç ), 2) a cross-replica matrix

that captures pairwise comparison between morphologies from

two dierent replicas of the same trajectory, and, 3) a late-state
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matrix that captures pairwise comparison of so called late-state

morphologies across dierent trajectories and their replicas. Here,

late-state morphology is a morphology reported at the end of tra-

jectory, where each trajectory covers the same duration of the

manufacturing process.

Within-trajectory Comparison. In this test, we perform comparison

of morphologies coming from the trajectory obtained for param-

eters ϕ = 0.56 and Ç = 2.4 (note that we observed similar results

for other parameter congurations). As before, we perform all-to-

all pairwise comparison using three dierent similarity measures.

The results of this experiment are summarized in Figure 8. Two

observations immediately emerge. First, both ComputeF and pixel-

by-pixel exhibit similar and desired behavior: as morphologies get

further apart in time (i.e., the distance between their indexes in-

creases) their similarity decreases. Moreover, morphologies at the

later stages of the trajectory (roughly with indexes above 40) tend

to be more similar to each other. This is explained by the physical

properties of the thin-lm generating process: after the initial de-

velopment, morphologies stabilize and change at much slower pace.

The surprisingly good performance of pixel-by-pixel comparison

is explained by the fact that within trajectory the spatial invariant

requirement (which we discuss in Section 2) becomes irrelevant,

and hence dierence between morphologies is directly reected by

change in pixels composition. The second observation is about poor

performance of the 2D-FFT similarity measure. Because even small

changes to the size and shape of the components in the morphology

are amplied in the frequency domain the resulting similarity mea-

sure becomes very sensitive to such changes. Consequently, except

of the diagonal morphologies are deemed dissimilar. We note that

this result is visually strengthened by how we normalize the heat

map.

Cross-replica Comparison. In the next test, we compare morpholo-

gies belonging to two replicas of the same trajectory with Ç = 0.54

and ϕ = 2.4 but generated using a dierent initial seed value.

As stated before, the replica morphologies (i.e., morphologies be-

longing to dierent replica but representing the same stage of the

generating process) are semantically similar, and we would expect

that fact to be reected by a good similarity measure. The result of

the experiment is summarized in Figure 9.

From the gure we can observe that ComputeF reports high

similarity along the approximate diagonal, and within blocks corre-

sponding to early and late stages of the trajectory (similar to what

we saw in Figure 8). This indicates that the morphologies maintain

a degree of similarity at the corresponding steps across replicas,

which is expected based on what we know about the generating

process. The other two functions (pixel-by-pixel and 2D-FFT) are

clearly unable to detect meaningful similarities. This supports our

claim that good similarity measure must be spatially invariant.

Late-state Morphologies Comparison. In the last set of experiments,

we focus on ve replicas corresponding to the four dierent com-

binations of the design parameters such that ϕ ∈ {0.50, 0.56} and

Ç ∈ {2.4, 3.0}. From each of the resulting 20 trajectories, we se-

lect late-state morphologies. As previously, we expect that replica

morphologies will be similar to each other. At the same time, be-

cause we are using diverse conguration parameters, we expect

that morphologies obtained for dierent design parameters will no-

ticeably dier. In Figures 10 and 11 we show the input morphologies

together with their morphology graphs.

To perform the analysis, we begin with comparison of similarity

matrices obtained for all 20 morphologies. From Figure 12 we can

see that ComputeF function is able to capture the similarity be-

tween the morphologies within each replica, while pixel-by-pixel

and 2D-FFT are clearly under-performing. If we look at the regions

of the heat map that correspond to cross-replica comparison (re-

gions marked with boxes A-D) we can see that only ComputeF

correctly reports minimal values within each block. At the same

time, it provides visible separation from other blocks (that corre-

spond to dierent parameters ϕ and Ç ). However, that separation

is not entirely clear for blocks A and B. To investigate this fur-

ther, we provide an alternative visualization by embedding each

morphology onto a two dimensional manifold by applying the

Multi-dimensional Scaling (MDS) algorithm [13] on each similarity

matrix. The resulting embeddings are shown in Figure 13a.

The results reveal that embedding obtained using ComputeF

similarity matrix delivers strong clustering of morphologies cor-

responding to the same design parameters (depicted by the same

color). One notable exception are morphologies with indexes 6 and

19, which are outliers. However, closer inspection of these mor-

phologies in Figure 10 shows that indeed these morphologies may

be considered semantically dierent from the remaining replicas.

In fact, upon investigation we discovered that the computational

model failed to converge (due to numerical instabilities) when sim-

ulating the trajectories to which outlier morphologies belong. This

demonstrates the robustness of our framework as well as its capa-

bility to quantify outliers and anomalous morphology data.

5 RELATED WORK

As we already discussed, the problem of morphology compari-

son emerges in many scientic applications. The commonly used

approaches focus on pixel-level algorithms, often combined with

2D-FFT to address the problem of spatial invariance [11, 18]. As

we demonstrated in our experiments, these strategies are usually

insucient to handle complexity of the real-world morphologies,

and lack exibility oered by our concept of signature function.

The idea of representing morphology by a graph structure has been

explored by Cecen et al. in [7], as well as Wodo et al. in [21]. How-

ever, in both works the focus was on capturing ne-grained details

of the morphology, not for the purpose of comparison, but to de-

liver a surrogate model. Consequently, in these approaches, each

pixel/voxel of a morphology is represented as a graph vertex. In our

work, the morphology is converted into a graph to represent both

higher-level morphology semantic and structural characteristics

sucient to reliably compare dierent morphologies.

The idea of determining visual similarity on the basis of semantic

features has been explored in the past in the form of representing

images in terms of latent space embedding using convolution neural

networks. This along with several other approaches [12] often

referred as deep learning metrics fall short because of two keys

reasons. One, training such models usually require large amounts

of data, which are expensive to obtain as morphologies are often

generated as a result of complicated scientic procedures. Second,
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